Depleted Uranium as Aggregate in Concrete Shielding Material

Les Dole
Oak Ridge National Laboratory,
P.O. Box 2008: Oak Ridge, TN 37831-6273
Phone: (865) 576-4310; E-mail: dolelr@ornl.gov

Presented at the
Russian-American Workshop on Management of Depleted Uranium
December 9-10, 2002, Moscow, Russia
U.S. Department of Energy, Russian Academy of Science,
State Unitary Enterprise, and Russian Research Institute of Chemical Technology

*Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.
Conclusions

• Combinations of gamma-absorbing depleted uranium (DU) and neutron-absorbing hydrated binders are shown to effectively reduce the size and weight of storage, transport, and disposal casks.

• DUCRETE™ will become one of the materials of choice for advanced spent nuclear fuel (SNF) casks.
 - Requires the demonstration of low-cost fabrication processes.
 - Requires the demonstration of long-term durability under expected service conditions.

TM = trademark, patented technology
Presentation Outline

- Programmatic background
- Description of technology
- Summary of previous accomplishments
- Description of current studies and results
- Conclusions
Vision and Mission of the DU Uses R&D Project

• Reduce DU disposition costs

• Consume the inventory of DU by using it in nuclear shielding applications

• Bring advanced DU shielding technologies to the level of demonstrated technical success and readiness for full-scale deployment
Use of DU Offers Advantages in SNF Storage, Transport, and Disposal Casks

- Concrete with DU (DUCRETE™) can be used in current cask designs, such as the concrete storage (CONSTOR) cask that is to be used for RBMK fuels
- Cermets can also be used in DU-steel modification to baskets
 - Addition of neutron absorbers
 - Addition of DUO₂ basket fill
Composition of DUCRETE™ – Depleted Uranium concrete

- Coarse-graded sintered UO$_2$ aggregates at a density of >8.9 g/cm3
- Cementitious binder, similar to Portland cement
- Fine aggregates, like quartz, fly ash, microreinforcement, and/or colemanite sands
- Water
DUCRETE™ Combines the High Density of DU with Binders of Low-Z Elements to Optimize Gamma and Neutron Attenuation

Comparison of wall thicknesses required to attenuate to 10 mR/H the neutron and gamma doses from 24 pressurized-water-reactor spent fuel assemblies
DUCRETE™ Storage Casks are Considerably Smaller and Lighter than Casks Constructed of Ordinary Concrete

For equivalent shielding capability, the DUCRETE™ cask is 35 tons lighter and 100 cm smaller in diameter than casks made from ordinary concrete.

Comparison of conventional Sierra and DUCRETE™ spent fuel dry-storage casks/silos.
DUAGG™ Briquettes are Stabilized DU Aggregates with Basalt Sintering Agent

Briquettes are pressed, solidified by liquid-phase sintering, and then crushed and gap graded for use in high-strength DUCRETE™ at 5000 to 6000 psi, (35–42 MPa)
DUAGG™ Processing and Sizing

Series of continuous chain reducing ovens designed for specific time-temperature processing conditions at constant throughputs.

Oxidize

Convert to UO₂

Crush, Mill, and Dry UO₂

Blend and Mill Paste

Form Briquettes

Binder

Pyrolyze binder and heat to 900°C

Sinter at 1300°C until maximum density is reached

Anneal and Cool

Crusher

Sort by size fractions

Weigh Hoppers

Double Blender

Weigh and blend gap-graded DUAGG to specified packing density

Steel and/or polymer fiber reinforcing

Screen

Pneumatic Hauler
Substituting DUCRETE™ in CONSTOR Cask Increases Capacity and Protection

- Reduces size and weight
- Allows higher thermal loads
- Meets criteria for improved technical and economic performance
- Allows enhanced physical protection within current weight limits
- Complies with emerging regulatory requirements and standards
DUCRETE™ Reduces CONSTOR Shielding to 11.5 in.
and Increases Thermal Capacity by 1.5

<table>
<thead>
<tr>
<th>Cask Dimensions</th>
<th>Sierra System</th>
<th>DUCRETE System</th>
<th>GNB CONSTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inside Steel Shell</td>
<td>Concrete</td>
<td>Inside Steel Shell</td>
</tr>
<tr>
<td>Thickness (in.)</td>
<td>1.75</td>
<td>29.00</td>
<td>1.00</td>
</tr>
<tr>
<td>ID (in.)</td>
<td>70.50</td>
<td>74.00</td>
<td>70.5</td>
</tr>
<tr>
<td>OD (in.)</td>
<td>74.0</td>
<td>132.0</td>
<td>72.5</td>
</tr>
<tr>
<td>Inside Length (ft)</td>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Wall cross section (ft²)</td>
<td>2.8</td>
<td>65.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Wall Volume (ft³)</td>
<td>41.4</td>
<td>977.5</td>
<td>23.4</td>
</tr>
<tr>
<td>End Thickness (in.)</td>
<td>1.75</td>
<td>11.6</td>
<td>1.00</td>
</tr>
<tr>
<td>End (2) Volume (ft³)</td>
<td>27.7</td>
<td>183.7</td>
<td>8.6</td>
</tr>
<tr>
<td>Total Volume (ft³)</td>
<td>69.1</td>
<td>1161.2</td>
<td>32.0</td>
</tr>
<tr>
<td>Density (lb/ft³)</td>
<td>491</td>
<td>146</td>
<td>491</td>
</tr>
<tr>
<td>Mass (lb)</td>
<td>33,926</td>
<td>169,684</td>
<td>15,732</td>
</tr>
<tr>
<td>Component Mass (ton)</td>
<td>17.0</td>
<td>84.8</td>
<td>7.9</td>
</tr>
<tr>
<td>Container Mass (ton)</td>
<td>102</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>Container Weight Reduction</td>
<td>-20%</td>
<td>-8%</td>
<td>-20%</td>
</tr>
<tr>
<td>Shielding Equivalency (lb/ft²)</td>
<td>72</td>
<td>353</td>
<td>41</td>
</tr>
<tr>
<td>Total Shielding Equivalency</td>
<td>425</td>
<td>429</td>
<td>425</td>
</tr>
</tbody>
</table>
Theoretical Thermal Conductivities of Composites Used in Calculations

<table>
<thead>
<tr>
<th>Concrete</th>
<th>Volume Percent of Component</th>
<th>Thermal Conductivity, W/(m•K)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cement Paste</td>
<td>Steel</td>
</tr>
<tr>
<td>Normal Concrete</td>
<td>0.25</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0.10</td>
</tr>
<tr>
<td>Heavy Concrete</td>
<td>0.25</td>
<td>0.12</td>
</tr>
<tr>
<td>DUCRETE</td>
<td>0.25</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Several DUCRETE™ Demonstration Programs Have Been Successfully Completed

Test block sectioned after curing

30-gal-drum overpack
Conceptual Designs of DUCRETE™ Casks Have Been Developed by Duke Power for HLW Storage

Shielding Effectiveness vs Wall Thickness

<table>
<thead>
<tr>
<th>DUCRETE™ Thickness (in.)</th>
<th>Surface Dose Rate (mrem/h)</th>
<th>Dose Rate @ 2 (mrem/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>41</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>27</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>
Current DUCRETE™ Technology Development

- DUAGG™ manufacturing process optimization, cost reduction, and demonstration
- Material properties characterization for matrix and aggregate stability with aging under service conditions
- Optimized binder and DUAGG™ for gamma and neutrons for specific cask designs
- Fabrication and testing of full-scale cask prototypes under a cooperative research and development agreement (CRADA)
Current Laboratory Studies
Current DUAGG™ Exposure Studies Using ASTM C289-94 Standard Test Method

- At a constant surface-to-liquid ratio of 1:10, the sintered DUAGG™ samples are exposed to
 - distilled (DI) water
 - 1 N sodium hydroxide (NaOH) standard solution
 - saturated water extract of high-alkali cement

- The three exposure temperatures and six time intervals are 25, 66, and 150ºC at intervals of 30, 60, 90, 180, 240, and 360 days
Particle A contains Al
Particle B contains Ti and some Mg
Area C contains the round DU particles surrounded by the basalt phase
DUAGG™ Exposed to Cement Water for 6 Months at 150°C
DUAGG Exposed to 1 N NaOH for 6 months at 150°C

Alkali reaction products with Na, Al, Si, Ca, and Ti
Proposed CRADA Between ORNL and the U.S. GNSI for the Development of Advanced Spent Nuclear Fuel Storage, Transport, and Disposal Casks and Overpacks

CRADA = Cooperative Research and Development Agreement; GNSI = General Nuclear Services, Inc.
Conclusions

- Combinations of gamma-absorbing DU and neutron-absorbing hydrated binders are shown to effectively reduce the size and weight of storage, transport, and disposal casks

- DUCRETE™ will become one of the materials of choice for advanced spent nuclear fuel (SNF) casks
 - Requires the demonstration of low-cost fabrication processes
 - Requires the demonstration of long-term durability under expected service conditions
Additional Material for Discussion
Summary

- DUCRETE™ casks have
 - Smaller dimensions
 - Lighter weight
 - Higher SNF heat loading
 - Potentially greater physical protection against assault
- We are conducting laboratory experiments to characterize DUAGG™/DUCRETE™ materials
- We are conducting preliminary cost studies
- We are pursuing a collaboration with GNSI to design and demonstrate the next generation of SNF casks
<table>
<thead>
<tr>
<th>Material</th>
<th>Thermal Conductivity, W/(m•K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>84.3</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>16.0*</td>
</tr>
<tr>
<td>Cement Paste</td>
<td>2.96*</td>
</tr>
<tr>
<td>Limestone</td>
<td>0.94*</td>
</tr>
<tr>
<td>Barium Sulfate</td>
<td>2.51*</td>
</tr>
<tr>
<td>UO$_2$ (Solid)</td>
<td>8.37</td>
</tr>
<tr>
<td>UO$_2$ (Powder, 68 vol %)</td>
<td>6.93*</td>
</tr>
</tbody>
</table>

Used in subsequent calculations
Aluminum Leached from DUAGG™

% leached

- 20C
- 67C
- 150C

DI water- 1 month
DI water- 2 months
DI water- 3 months
NaOH - 1 month
NaOH - 2 months
NaOH - 3 months
NaOH - 6 months
cement sol.- 1 month
cement sol.- 2 months
cement sol.- 3 months
cement sol.- 6 months

20C
67C
150C
Silicon Leached from DUAGG™

% leached

DI water - 1 month
DI water - 2 months
DI water - 3 months
NaOH - 1 month
NaOH - 2 months
NaOH - 3 months
cement sol. - 1 month
cement sol. - 2 months
cement sol. - 3 months
cement sol. - 6 months

20C
67C
150C
GNB CONSTOR Cask for RMBK SNF
<table>
<thead>
<tr>
<th>Purpose</th>
<th>Amount, tonnes</th>
<th>Time, years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab scale tests</td>
<td>2–5</td>
<td>Now</td>
</tr>
<tr>
<td>Intermediate-scale tests</td>
<td>5–10</td>
<td>1–2</td>
</tr>
<tr>
<td>Pilot-scale cask fabrication</td>
<td>18–22</td>
<td>2–3</td>
</tr>
<tr>
<td>Full-scale cask fabrication</td>
<td>210–240</td>
<td>3–5</td>
</tr>
<tr>
<td>Total</td>
<td>380–440</td>
<td>7–11</td>
</tr>
</tbody>
</table>

Potential costs
(current commercial)

$1.5M–$30M
Preliminary Plant Design Study for the Production of DUAGG™
Objective and Scope

- Conceptual design for DUAGG™ plant to estimate potential capital and operating costs
- Design of a DUAGG™ plant that receives DUO₂; presses and sintered briquettes; and crushes, sizes, and packages DUAGG™ to be used in high-strength DUCRETE™ for SNF casks
Baseline Assumptions for Scaling the Plant and Equipment

- Achieve production rate of 2834 tonnes per year to meet 30% penetration of domestic market for SNF storage and transport casks (about 50 casks)
- Receive DUO$_2$ from external source
- Receive sintering and binding materials for milling, blending, pressing, sintering, and crushing
- Produce crushed, gap-graded, and amended DUAGG™ product for use in DUCRETE™ that is formed off-site
Site Area: 170 ft (52 m) x 265 ft (81 m)
Preliminary Capital Cost Elements

<table>
<thead>
<tr>
<th>Capital Costs ($1,000 USD)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil/Site Preparation</td>
<td>500</td>
</tr>
<tr>
<td>Utilities Building Services</td>
<td>56</td>
</tr>
<tr>
<td>Building Structures</td>
<td>2,620</td>
</tr>
<tr>
<td>Process Equipment</td>
<td>2,224</td>
</tr>
<tr>
<td>Special Process Services</td>
<td>35</td>
</tr>
<tr>
<td>Engineering</td>
<td>1,591</td>
</tr>
<tr>
<td>Piping</td>
<td>1,204</td>
</tr>
</tbody>
</table>
Preliminary Capital Cost Elements (cont.)

<table>
<thead>
<tr>
<th></th>
<th>Capital Costs ($1,000 USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Labor</td>
<td>1,205</td>
</tr>
<tr>
<td>Electrical</td>
<td>220</td>
</tr>
<tr>
<td>Spare Parts</td>
<td>346</td>
</tr>
<tr>
<td>Management</td>
<td>1,000</td>
</tr>
<tr>
<td>Safety Systems</td>
<td>600</td>
</tr>
<tr>
<td>Shipping</td>
<td>110</td>
</tr>
<tr>
<td>Total Capital Investment</td>
<td>11,601</td>
</tr>
</tbody>
</table>
Preliminary Total Operating Cost

Baseline Cost of DUO$_2$: 0 USD/ton

<table>
<thead>
<tr>
<th>Cost</th>
<th>Cost (USD/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>4,014</td>
</tr>
<tr>
<td>Electricity</td>
<td>56</td>
</tr>
<tr>
<td>Chemicals</td>
<td>309</td>
</tr>
<tr>
<td>Cost of DUO$_2$</td>
<td>0</td>
</tr>
<tr>
<td>Capital Recovery</td>
<td>2,320</td>
</tr>
<tr>
<td>Total Operating Cost</td>
<td>6,699</td>
</tr>
</tbody>
</table>

![Pie chart showing cost distribution]

- **Labor**: 60%
- **Chemicals**: 4.5%
- **Electricity**: 1%
- **Cost of UO$_2$**: 0%

Note: USD/year
Future Engineering Analyses

- Determine the specification of DUO$_2$ feed to plant
- Simplify the grinding, mixing, and sintering processes to reduce labor required
- Optimize briquetting and final grinding processes
- Examine other agglomeration processes
- Conduct a parametric process parameters study on the reproducibility of DUAGG™
- Research microreinforcement in the DUCRETE™
Russian RBMK Spent Fuel Cask with Heavy Concrete

Heavy concrete with steel shot and barium sulfate

GNB CONSTOR test cask for RBMK SNF