

Leaching Assessment of Cementitious Rad-Waste Monoliths

Les Dole Vanderbilt Workshop on Leaching Characterization July 9, 2004

Contact: dolelr@ornl.gov

865-576-4319

Leach Tests with Analysis to Compare and Formulate Better Waste Forms

- Complex alumina-silicates with fine textured mineral phases and large fraction of amorphous hydrosilicate phase, both of which slowly undergoes diagenesis and contact metamorphism over centuries and millennia
- Leaches matrix components at different rates and results in a complex series of solution reactions with groundwater adjacent to the surface that redeposit minerals

UT-BATTELLE

Short-term Leach Testing to Assess impacts of Waste Constituents and Formula Constituents

- Choices of cement types
- Choices of admixtures to change:
 - Ca/Si ratios
 - Al/Si ratios
 - Permeability (H₂O, O₂, SO₄=, Cl⁻, etc)
 - Internal ion exchange capacity
 - Reducing conditions (Eh/Ph regime)

Cementitious Material Compatible with Yucca Mountain Geochemistry

LR Dole, CH Mattus, LR Riciputi, M Fayek, L.M. Anovitz, D Olander, S Ermichev, and VI Shapovalov

- Select durable low-pH cement/concrete formulas based on materials science, thermodynamic modeling, and experience
- No Free Hydroxide (Portlandite)
- Test mechanical properties and chemical interactions with YMP brines under expected service conditions
- **Compare results with** •
 - Ancient cements (2 6 Ky)
 - Natural cements (>100 My)
- Calculate impacts on improving YMP construction costs and reducing risks

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Title date

Test Performances at Hydraulic Extremes

- Quasi-static flow (episodic saturation)
 - Solubility control
 - Ion exchange equilibrium
 - Source-term = C_{sat} x Flow

Dynamic (monolith permeability <1/100 soil)

- Advection of saturated groundwater
- Release to groundwater limited by diffusion within the monolith
- Source-term A₀ {S/V} (D_{diffusion}/time)^{1/2}

A Relatively Impermeable Monolith has no Advection

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

A Practical Model for the "Effective" Diffusion Coefficient

K _{MB} =	$\frac{\left(\frac{mole \ of \ species}{mass \ of \ porous \ solid}\right)}{\left(\frac{mole \ of \ species}{volume \ of \ liquid}\right)} \ .$

$$D_{e} = \left[\frac{D_{f}}{\tau^{2} \cdot \left[1 + \rho_{b} \cdot \left[\frac{(1 - \epsilon)}{\epsilon} \right] \cdot K_{\text{MB}} \right]} \right],$$

where

- τ = tortuosity, dimensionless (This study assumed that τ was equal to 1.47 for the compacted berm soils.)
- ρ_b = bulk density of porous soil, g/cm³
- ϵ = average *effective* open porosity, *dimensionless*.

500 Year Release Model for Sr-90 Activity from **Grouted GAAT Sludge From Gunite Tank W9**

Effective diffusion Coefficient:

Time iteration

 $D_{e} := \left(2.6 \cdot 10^{-13}\right) \cdot \frac{cm^{2}}{sec} * Data from similar hydrofracture grouts * assumes most activity is Sr-90$

i := 0, 10..500

 $t_i := i \cdot yr$

Surface to Volume:

 $\frac{S}{V} = 5.125 \text{ cm}^{-1}$ * Assumes entire surface on the monolith is exposed to flowing ground water. No credit is given for the existing tank walls.

Infinite slab diffusion model: $FI(t) := 2 \cdot \frac{S}{V} \cdot \sqrt{\frac{D_e \cdot t}{\pi}}$

* calculates a conservative overestimate of release

monolith

$$t2 := \left(0.2 \cdot \frac{V}{S \cdot 2}\right)^2 \cdot \left(\frac{\pi}{D_e}\right)$$

$$t2 = 145.805 \text{yr}$$

$$FI(t2) = 0.2$$
*On-set of geometry specific effects
$$t5 := \left(0.5 \cdot \frac{V}{S \cdot 2}\right)^2 \cdot \left(\frac{\pi}{D_e}\right)$$

$$t5 = 911.278 \text{yr}$$

$$FI(t5) = 0.5$$
*Chemical half-life in monolith

Onset of Geometric Model at FC=0.2

Nestor, C. W., Jr., *Diffusion from Solid Cylinders*, **ORNL/SDTM-84**, Lockheed Martin Energy Research Corp., Oak Ridge National Laboratory, Oak Ridge, Tennessee, January 1980.

 $\alpha_j := \frac{\operatorname{root}(J0(j), j)}{a}$

De = effective diffusion coefficient, cm2 s-1

a = cylinder radius, cm

j = jth positive root of a zero-order Bessel function [J0(m)] L = cylinder half-height, cm.

Diffusion from a Cylinder:

$$FQ(t) := 1 - \frac{32}{\pi^2 \cdot a^2} \cdot \sum_{\substack{n = j}} \frac{e^{\left[\left[\left(\alpha_j \right)^2 + \left(2 \cdot n - 1 \right)^2 \cdot \frac{\pi^2}{4 \cdot L^2} \right] \cdot t \right]}}{\left(2 \cdot n - 1 \right)^2 \cdot \left(\alpha_j \right)^2}$$

FQ(t2) = 0.223 FS(t) := if(t > t2, FQ(t), FI(t)) $F_i := FS(t)$

years

500

JT-BATTELLE

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

CURIE RELEASE FROM W9 MONOLITH as Sr-90

Title date

Static Leaching with Secondary Mineral Formation

Title date

Uranium Leached From DUAGG

Aluminum Leached From DUAGG

Silicon Leached From DUAGG

DUAGG after 6 months in DI water

150 C secondary electrons OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

A contain Ti and some Mg

UT-BATTELLE

DUAGG after 6 months in cement pore solution

67 C secondary electrons

Covered by CaCO₃ and Needle like crystals containing Ca, Si and some Al.

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

DUAGG after 6 months in cement pore solution

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Conclusions?

Short-term leach testing is conservative IF:

- Test does not allow for the effects of secondary minerals, which are
 - Highly selective for contaminant species
 - Forms protective diffusion surface-barriers
- The monolith matrix is relatively stable in the geochemistry of the disposal horizon
 - Shares same regions of the geochemical stability fields
 - Has similar SiO₂-Al₂O₃ composition ranges
- Ultimate mechanisms of leaching, alterations, and weathering are controlled by solid-diffusion rates

